15 Apr 2013

There are several testing techniques to choose from when measuring glass transition temperature. But how do you know which one is best for you?

The thermal properties of polymeric materials are important to the function of components and assemblies that will operate in warm environments. Glass Transition Temperature (referred herein as Tg) is the point at which a material goes from a hard brittle state to a soft rubbery state. Amorphous polymers only have a Tg. Crystalline polymers exhibit a Tm (melt temperature) and typically a Tg since there is usually an amorphous portion as well ("semi"-crystalline). Identifying the Tg of polymers is of interest for various reasons, but is most often used for quality control and research and development.

There are three general techniques for measuring Tg:

  • ImageDifferential Scanning Calorimetry (DSC) – This is probably the most traditional and common technique for most polymeric materials. Simply stated, DSC utilizes a heat flow technique and compares the amount of heat supplied to the test sample and a similarly heated "reference" to determine transition points. Tg is typically calculated by using a half-height technique in the transition region. The heating rate and sample heat history are a couple of factors that may affect the test result. Depending on the equipment capability, DSC can be used for a wide range of thermoplastic and thermoset polymers. For materials that have broad Tg's, DSC may not be sensitive enough to show a large enough transition for calculation purposes.

  • ImageThermal Mechanical Analysis (TMA) – TMA is used to measure Coefficient of Thermal Expansion (CTE) of polymers. TMA uses a mechanical approach for measuring Tg. A sensitive probe measures the expansion of the test specimen when heated. Polymers typically expand as temperature is increased. From the expansion curve, a CTE can be calculated over a temperature range. If a material goes through a Tg during a TMA test, the curve shape changes significantly and Tg can be calculated by using an onset technique. Amorphous polymers would typically not utilize the TMA approach because the material would soften to the point where the probe penetrates into the sample. Samples that remain somewhat rigid through Tg would be good candidates for Tg by TMA. The heating rate chosen can affect the Tg.

  • ImageDynamic Mechanical Analysis (DMA) – DMA is probably the most sensitive technique (of the discussed methods) for Tg analysis. DMA measures the response of a material to an applied oscillatory strain (or stress), and how that response varies with temperature, frequency, or both. DMA is able to separate and measure the elastic and viscous components of polymers. How the material responds to the temperature increase can be illustrated by various means on the DMA graph. There are three typical approaches for reporting Tg by DMA. All techniques are viable but may yield different results. Several results may include: 1) Onset of the storage modulus curve; 2) Peak of the loss modulus curve; and/or 3) Peak of the Tan Delta curve.

    There also are different modes of oscillation used for DMA such as torsional, single and dual cantilever, tension, compression, three-point bend and compression. Various heating rates, frequencies and strains can be utilized as well. All of these variables can affect the Tg. Compared to DSC, DMA can be 10 to 100 times more sensitive to the changes occurring at the Tg. DMA is useful for polymers with difficult to find Tg's such as epoxies, polymers with Tg's well below ambient temperature and highly crosslinked polymers. It is important to note Tg by DMA can vary significantly from one reporting technique to the next.

As you can see there are various approaches to obtain Tg of polymeric materials. Sometimes trial and error has to be used to see what technique is best. It is extremely important to know which technique and test parameters were used to determine Tg if comparing back to historical data. Similarly, if testing to a specification or industry standard, the technique and test parameters must be well defined. Even within a test technique, the means of obtaining the Tg can be performed various ways and the result can vary significantly. The Tg by DSC, TMA or DMA rarely will be the same and can vary by as much as 20°C or more.

Have you had experiences where one technique worked much better than another? What are your thoughts? Please leave a comment or question below and our expert, Glenn Sime, will get back with you.

You may be interested in...